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Abstract

The RYR1 gene, which encodes the sarcoplasmic reticulum calcium release channel or type 1 ryanodine receptor
(RyR1) of skeletal muscle, was sequenced in 1988 and RYR1 variations that impair calcium homeostasis and increase
susceptibility to malignant hyperthermia were first identified in 1991. Since then, RYR1-related myopathies (RYR1-
RM) have been described as rare, histopathologically and clinically heterogeneous, and slowly progressive
neuromuscular disorders. RYR1 variants can lead to dysfunctional RyR1-mediated calcium release, malignant
hyperthermia susceptibility, elevated oxidative stress, deleterious post-translational modifications, and decreased
RyR1 expression. RYR1-RM-affected individuals can present with delayed motor milestones, contractures, scoliosis,
ophthalmoplegia, and respiratory insufficiency.
Historically, RYR1-RM-affected individuals were diagnosed based on morphologic features observed in muscle
biopsies including central cores, cores and rods, central nuclei, fiber type disproportion, and multi-minicores.
However, these histopathologic features are not always specific to RYR1-RM and often change over time. As
additional phenotypes were associated with RYR1 variations (including King-Denborough syndrome, exercise-
induced rhabdomyolysis, lethal multiple pterygium syndrome, adult-onset distal myopathy, atypical periodic
paralysis with or without myalgia, mild calf-predominant myopathy, and dusty core disease) the overlap among
diagnostic categories is ever increasing. With the continuing emergence of new clinical subtypes along the RYR1
disease spectrum and reports of adult-onset phenotypes, nuanced nomenclatures have been reported (RYR1-
[related, related congenital, congenital] myopathies). In this narrative review, we provide historical highlights of
RYR1 research, accounts of the main diagnostic disease subtypes and propose RYR1-related disorders (RYR1-RD) as a
unified nomenclature to describe this complex and evolving disease spectrum.
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Introduction
Congenital myopathies (CM), a term first coined by Victor
Dubowitz [1], are a group of inherited, non-dystrophic
neuromuscular disorders characterized by specific clinical
features and skeletal muscle histopathology [2]. Pathogenic

variations in the RYR1 gene, a relatively large gene in the
human genome, are the most common cause of CM and
contribute to the clinical, histopathological, and genetic
heterogeneity of CMs.
The RYR1 gene (19q 13.2) encodes a calcium (Ca2+)

release channel located in the terminal cisternae of the
sarcoplasmic reticulum (SR) of skeletal muscle that is ac-
tivated by CaV1.1 voltage sensor proteins in the trans-
verse tubule membrane during excitation-contraction
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(EC) coupling [3]. The purification of RyR1 Ca2+ release
channels in 1988 [4] and the subsequent discovery in
1991 of pathogenic RYR1 variants [5] led to the associ-
ation of impaired Ca2+ homeostasis with malignant
hyperthermia (MH) susceptibility (MIM # 145600) [6].
MH is a potentially fatal disorder of skeletal muscle Ca2+

regulation. MH episodes are triggered by exposure to
certain volatile anesthetics (e.g., sevoflurane, desflurane)
and depolarizing muscle relaxants (succinylcholine). MH
episodes are characterized by uncontrolled muscle hy-
permetabolism, with a clinical presentation including
hypercapnia, sinus tachycardia, masseter muscle rigidity,
and hyperthermia [5, 7]. Guidelines from the European
Malignant Hyperthermia Group (EMHG) and Malignant
Hyperthermia Association of the United States
(MHAUS) continue to inform the use of anesthetic
drugs in individuals susceptible to MH [8, 9]. In certain
cases, extreme heat conditions, fever, and/or exertion
can result in symptoms that mimic MH episodes (en-
hanced heat response or EHS) [10–12]. Variations in the
RYR1 gene remain the leading cause of MH susceptibil-
ity; however, few MH-associated variations in other
genes such as CACNA1S and STAC3 have been de-
scribed [13].
Functional analyses of RyR1 channels resulting from pu-

tative RYR1 disease variants revealed multiple causative
mechanisms including (1) increased sensitivity of RyR1
channels to activators (e.g., caffeine, halothane, CaV1.1
voltage sensors) as observed in MH resulting in uncon-
trolled channel opening and Ca2+ release [14], (2) en-
hanced RyR1 Ca2+ leak [15], (3) reduction in RyR1 Ca2+

permeation leading to reduced Cav1.1-mediated SR Ca2+

release, a process referred to as excitation-contraction un-
coupling [16, 17], and (4) dramatic reduction in RyR1
channel expression [6]. In spite of these advances, many
putative RYR1 variants have not yet been directly tested/
associated with Ca2+ release dysfunction, and thus, are
classified as variants of uncertain significance (VUS) [18].
With a likely underestimated disease prevalence of 1:

90,000 individuals [19], RYR1-RM is considered the most
common form of non-dystrophic muscle disease in
humans [20]. Of note, genetic variants resulting in MH
susceptibility are more common, affecting approximately
1:3000–1:8500 [13], with a recent estimate from an ex-
ome analysis of a cohort of 870 individuals suggesting a
prevalence of 1 in 400 [21]. RYR1-RM is inherited in
both autosomal dominant and recessive manners and de
novo cases have also been described. Clinical features
suggestive of RYR1-RM are extensive, with mild to se-
vere symptoms ranging from delayed motor milestones,
proximal muscle weakness, hypotonia, and fatigue, to
kyphoscoliosis, ophthalmoplegia, and moderate to severe
respiratory insufficiency, which is more often apparent
in recessive cases [22–24].

Historically, RYR1-RM subtypes were diagnosed and
named based primarily on muscle biopsy histopathologic
features such as central cores, cores with rods, central
nuclei, fiber type disproportion, and multi-minicores. A
number of earlier cases were described prior to RYR1
gene identification and association with disease and,
thus, may have been classified differently today. How-
ever, these histopathologic features are not unique to
RYR1-RM, can be dynamic over time, may vary based on
biopsy site, and may be absent when biopsy is performed
at an early age [25, 26] or reflect a consequence of the
gene dose (heterozygous = MH susceptibility versus
homozygous = clinical myopathy) [27]. There are also
several clinical and histopathologic similarities between
the main RYR1-RM diagnostic categories of central core
disease (CCD; MIM # 117000), multi-mini core disease
(MmD; MIM #255320), core-rod myopathy (CRM), cen-
tronuclear myopathy (CNM), and congenital fiber-type
disproportion (CFTD) [28, 29].
RYR1-related disorders can be viewed as occurring

along a spectrum [30]. This spectrum includes RYR1
variant-associated clinical phenotypes including King-
Denborough syndrome, congenital neuromuscular dis-
ease with uniform type 1 fiber (CNMDU1), dusty core
disease, rhabdomyolysis-myalgia syndrome, atypical peri-
odic paralysis, and bleeding abnormalities [31–38]. Add-
itionally, the spectrum of RYR1-related disorders has
further expanded following reports of inherited, adult-
onset phenotypes [39, 40].
Nuanced terminology is evident within the literature

(including RYR1-related, RYR1-associated, RYR1-related
congenital, RYR1-congenital) myopathies [28, 41–43].
The number of non-dystrophic neuromuscular disorders
associated with RYR1 genetic variations reflect the im-
portance of the RyR1 protein in normal muscle function.
Numerous informative reviews have been published on
the RYR1 disease spectrum [3, 13, 44–49]. This narrative
review describes key historical milestones that led to the
recognition of RYR1-related disorders as an overarching
entity occurring along a complex clinical and histo-
pathological spectrum. Here, we also summarize the
current state of knowledge on the primary disease sub-
types and propose a unified nomenclature that encom-
passes current and future phenotypes.

Methods
As a preface, this is a historical narrative review. With
input from subject-matter experts in RYR1-related disor-
ders (including malignant hyperthermia), and informa-
tion in landmark publications such as Magee and Shy
[50] and Dubowitz and Pearse [51], the following search
strategies were used for this narrative review: (1) com-
puter search of databases for articles on congenital my-
opathies, and specifically, core myopathies; (2) review of
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congenital myopathy textbooks [52–55]; and (3) review
of key articles of historical significance from reference
lists of retrieved publications.
PubMed, ScienceDirect, and Scopus databases were

searched without setting date limits or language exclu-
sions. Chapters or sections from specialized neuromus-
cular textbooks or journals not annotated or available
online were requested through the NIH Library. A time-
line approach of landmark discoveries, starting from the
earliest possible reports of congenital myopathies with
related phenotypic features to that of RYR1 subtypes was
used as a framework for this historical perspective.

Historical perspective of RYR1-related disorders
As with most historical reports, to our knowledge, none
of the reported cases highlighted in this review prior to
the advent of genetic sequencing have been resolved or
unequivocally attributed to variations in the RYR1 gene.
Other genes currently associated with the histopatho-
logic features of the main RYR1-related disorder sub-
types are summarized in Table 1 and the historical
timeline of their emergence is depicted in Fig. 1.

Early twentieth century: amyotonia congenita
Most CMs in the early twentieth century were originally
misclassified as amyotonia congenita, a condition ini-
tially described by neurologist Herman Oppenheim in
1900 [62] as general or local hypotonia of muscles in
early infancy, with hyporeflexia, limb paralysis, absence
of muscle wasting and familial involvement, and ten-
dency to improve (Fig. 1).
In the early 1900s, the diagnosis of amyotonia congenita

was given in cases involving sparing of the muscles sup-
plied by the cranial nerves with muscular weakness and
atony attributed to delayed muscle development. How-
ever, there were similarities in the clinical presentation of
amyotonia congenita and infantile spinal muscular atro-
phy described by Werdnig and Hofmann in 1891 [63], a
condition of progressive muscular flaccidity and weakness
involving axial and proximal muscles due to loss of anter-
ior horn cells in the spinal cord, as post-mortem records
of some fatal cases of amyotonia congenita revealed le-
sions in the ventral horn cells and neuropathic atrophy
[64]. These findings and the lack of clearly defined differ-
entiating clinical features at the time resulted in an alter-
native erroneous hypothesis that the two conditions were
variations of the same disease [65, 66].

Early twentieth century: post-operative heat stroke
Cases of hyperpyrexia associated with anesthesia during
and immediately following surgical procedures were first
reported in 1900 [67–71]. In 1919, written documents
regarding the deaths of a mother and son anesthetized
with chloroform and ether by G.A. Jones and E. Penny

recounted muscle rigidity, violent and persistent re-
spiratory muscle spasms, and rapid pulse [72]. How-
ever, the body temperature of the patients was not
mentioned in this suggestive hereditary susceptibility
to chloroform.

1950s to 1960s: muscular degeneration
A disease termed muscular degeneration (MD) in pigs,
manifested by discoloration of the skeletal musculature,
was first reported in 1954 by J. Ludvigsen [73]. The altered
musculature appeared gray or pale in color resembling
that of chicken meat. MD was often fatal, especially when
animals were exposed to exercise or stress. Prior to death
the animals had dyspnea, cyanosis, circulatory insuffi-
ciency resulting from musculature vasoconstriction, and
hyperthermia. Briskey and colleagues referred to this
condition as pale, soft, exudative (PSE) tissue [74], and
Kjolberg and colleagues referred to this condition as
“white muscle disease” [75]. This alteration lowered the
quality of the meat and therefore was a significant monet-
ary loss to the meat processors and retailers. PSE was
associated with predisposition to accelerated post-mortem
glycolysis, and onset of rigor mortis at pH values below
5.9 and temperatures above 35 °C. PSE muscle ultrastruc-
ture showed disruption of sarcoplasmic components and
protein filaments; however, the tissue appeared macro-
scopically normal. The economic implications of PSE
meat generated a significant amount of research into
porcine stress syndrome (PSS) [73, 76–78].

1950s: central core disease
In 1956, Magee and Shy [50] investigated muscle biopsy
findings from one large family with five affected mem-
bers. Symptoms included non-progressive, infantile
hypotonia with mostly proximal weakness. All biopsies
from affected individuals showed similar appearances of
larger than normal muscle fibers (up to 240μm in dia-
meter), amorphous central cores in almost all fibers, and
myofibrils that stained blue instead of purple with
Gömöri trichrome stain. The myopathy resulting in this
curious histopathological feature was later referred to as
central core disease (CCD) by Greenfield and colleagues
in 1958 [79], reflecting lack of oxidative enzyme activity
in the amorphous cores due to mitochondrial depletion
[51]. Additional histopathological features of CCD in-
clude increased internal and central nuclei, presence of
rods, minimal to moderate endomysial fibrosis, increased
fatty tissue and connective tissue infiltration, Z-line
streaming, sarcomeric disorganization, fiber size variation,
and predominance of type 1 fibers [79].

1960s: malignant hyperthermia
In 1960, Michael Denborough and Roger Lovell described
a case in which a young man nearly died following general
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anesthesia procedure with halothane for a compound frac-
ture of the tibia and fibula [80]. There had been ten deaths
attributable to general anesthesia, specifically ethyl chlor-
ide and ether, in the proband’s family. The pattern of
inheritance was similar to an incomplete penetrant domin-
ant gene or genes [81]. Available medical records showed
that the course of events in the deceased family members
had been similar, with convulsion and hyperthermia noted
in two cases. This was the first breakthrough in recogniz-
ing MH as a heritable condition.

1960s: core-rod myopathy
Shy and colleagues reported on a child with a non-
progressive congenital myopathy and curved, thread-like
structures at the periphery and center of affected muscle
fibers on histopathological examination, and a clinical

picture of a “floppy infant” [82]. Histopathologically, the
lesion showed a spectrum of muscle fiber size ranging
from 8 to 56 μm, with aggregates of palisading rod-like
materials in the sub-sarcolemmal areas external to the
myofibrils. The rods stained red on Gömöri trichrome
stain, showed no polarization with white light or cross-
banding, contained no formed inclusions such as mito-
chondria, and affected fibers had greater phosphorylase
activity than unaffected fibers. These features reflected a
new morphological muscle cell abnormality with highly
organized protein-containing rod formations without
cross-striations. This myopathic presentation was named
nemaline myopathy because the structures could repre-
sent as rods or coils of thread-like structures.
Blurring the distinction between nemaline myopathy

and CCD, a case of congenital myopathy with a

Table 1 Genes associated with main subtypes of RYR1-related myopathies

Gene Locus Inheritance Prevalence Protein

Central core disease RYR1 19q13 AD or AR >90% [56] Ryanodine receptor type 1

ACTA1 1q42 AD Rare Skeletal α-actin

Core-rod myopathy RYR1 19q13 AD or AR Most common cause [2] Ryanodine receptor type 1

NEB 2q2 AR Rare Nebulin

KBTBD13 15q25 AD Rare Kelch 13

Centronuclear myopathy RYR1 19q13 AR Most common cause of AR disease [28] Ryanodine receptor type 1

DNM2 19p13 AD Most common cause of AD disease [2] Dynamin-2

BIN1 2q14 AR Rare Amphiphysin

CCDC78 16p13.3 AD Rare Coiled-coil domain-containing
protein 78

± cardiomyopathy TTN 2q31 AR Rare Titin

Myotubular myopathy MTM1 Xq28 XLR Most common cause in severely
affected males [57]

Myotubularin

Congenital fiber-type
disproportion

TPM3 1q2 AD 25-50% [58] α-tropomyosin

RYR1 19q13 AR ~20% [59] Ryanodine receptor type 1

ACTA1 1q42 AD Rare Skeletal α-actin

TPM2 9q13 AD Rare β-tropomyosin

SELENON 1p36 AR Rare Selenoprotein N

± cardiomyopathy MYH7 14q11 AD Rare Slow myosin heavy chain

HACD1 10p12 AR Rare 3-hydroxyacyl-CoA dehydratase
1

+ cardiomyopathy Unidentified
gene

Xp22.13 to
Xq22.1

XLR Rare ?

Multi-minicore disease SELENON 1p36 AR ~50% [60]a Selenoprotein N

RYR1 19q13 AR Second most common cause [61] Ryanodine receptor type 1

± cardiomyopathy MYH7 14q11 AR Uncommon Slow myosin heavy chain

+ cardiomyopathy ACTA1 1q42 AD Rare Skeletal α-actin

+ cardiomyopathy DES 2q35 ? Rare Desmin

+ cardiomyopathy LMNA 1q22 ? Rare Lamin A/C

Adapted from Jungbluth, Sewry, & Muntoni, The Congenital Myopathies, in Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Diseases,
Chapter 93, 5th edition
Abbreviations: AD autosomal dominant, AR autosomal recessive, XLR X-linked recessive
aclassic MmD phenotype. Only the most common genetic backgrounds and predominant modes of inheritance are indicated
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combination of cores and rods was reported in one fam-
ily in 1965 by Afifi et al. [83]. Skeletal muscle biopsies
from the mother and daughter with autosomal dominant
inheritance, congenital, non-progressive myopathy were
examined. The daughter’s biopsy exhibited CCD fea-
tures, while the mother’s biopsy exhibited characteristics
of both CCD and nemaline myopathy. The authors sug-
gested that CCD and nemaline myopathy could be mani-
festations of one disease process, with various means of
expression, because it would be most unusual to find
two unrelated rare diseases with similar clinical features
and inheritance patterns in the same individual.

1960s: centronuclear myopathy
An undescribed, slowly progressive myopathy character-
ized by the presence of central nuclei in about 85% of
muscle fibers was referred to as myotubular myopathy
(MTM) by Spiro and colleagues in 1966 [84] and familial
centronuclear myopathy (CNM) by Sher and colleagues
in 1967 [85]. CNM subtypes were unified histopatho-
logically by small myofibers containing hyperchromatic
central nuclei with wrinkled or serrated borders in > 25%
of muscle fibers, and rows or aggregates of up to thirty
nuclei on hematoxylin and eosin stain. The central nuclei
are usually surrounded by an unstained space.

1960s to 1970s: congenital fiber-type disproportion
Following a series of detailed histological studies of vari-
ations in muscle fiber types in neuromuscular diseases

[86], Michael Brooke coined the term congenital fiber-
type disproportion (CFTD) to describe consistently
smaller type 1 muscle fibers than type 2 fibers in four-
teen patients, with fiber size disproportion (FSD) greater
than 12% in the absence of any other histological abnor-
mality [87]. CFTD was initially considered to be a non-
specific feature that preceded the development of more
specific histologic features, as other CMs presented with
FSD and corresponding clinical manifestations [88].

1970s: multi-minicore disease
Multiple small core-like structures on skeletal muscle bi-
opsy in two siblings with CM, termed multicore disease,
were first reported by Engel and colleagues in 1971 [89].
Different from the central cores of CCD, these variable,
indistinct multiple mini cores of areas with decreased
oxidative activity extend only a short distance along the
length of the muscle fiber, with some larger mini cores
stretching across the fiber width.

1980s to 1990s: RyR1 localization and malignant
hyperthermia linkage
The characterization of RyR1 ryanodine binding [90, 91],
physiology of PSS and identification of porcine MH
(hal) locus [92–94], channel activity [95, 96], biochem-
ical purification [97, 98], cloning [99–101], and the
initial classification of CCD, MmD, and CFTD as “con-
genital myopathies of unknown aetiology” [102] all took
place in the mid-late 1980s. Linkage analysis found MH

Fig. 1 Timeline of significant discoveries/milestones in the evolution of RYR1-RD. 1900s to present: In the twentieth century, congenital myopathy
diagnoses were based primarily on muscle biopsy histopathologic features. Advancements in next-generation sequencing enabled more precise
identification of RYR1-related phenotypes. Solving of the RyR1 structure at near-atomic resolution provided valuable insight into RyR1 channel
function and disease mechanisms. These advances paved the way for the first RYR1-RM clinical trial completed in 2018 and the Phase 1 Rycal trial
which began enrolling participants in 2020
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sensitivity to co-segregate with chromosomal markers in
the RYR1 gene with a lod score of 4.20, consistent with
MH being caused by mutations in the RYR1 gene in
1990 [103]. These studies naturally prompted the search
for specific RYR1 pathogenic variants and led to identifi-
cation of the first MH causative variant in 1991
(c.1843C>T; p.Cys615Arg) [5, 104] and then sub-
sequently for CCD in 1993 [105].

2004: imaging of intramuscular fatty infiltration as a
diagnostic tool
The wide range of phenotypes associated with RYR1 var-
iants, the large size of RYR1, and complex histopatho-
logical overlap across different CMs due to variants in
other genes encoding sarcolemmal and sarcotubular pro-
teins [29] present challenges in confirmatory diagnosis.
RYR1-RM-affected individuals show a consistent pattern
of relative sparing of rectus femoris, adductor longus,
hamstring muscles, the medial head of the gastrocne-
mius (except in calf-predominant myopathy) [106], and
muscles of the anterior compartment of leg [107]. In
2004, Jungbluth and colleagues used magnetic resonance
imaging (MRI) to classify distinct patterns of selective
muscle fatty infiltration using in congenital myopathies
associated with RYR1 causative variations [107]. As a
result, muscle MRI is now used to supplement clinical
assessment and genetic testing for the diagnosis of
patients with variable histopathology. The term “RYR1-
related congenital myopathies” was used to describe the
distinct pattern of muscle involvement reported.

2006: generation of first knock-in mouse models of RYR1-
related myopathies (RYR1-RM)
Creation of a knock-in mouse heterozygous for the
Y524S variation (equivalent to Y522S in humans) by
Chelu et al. [108] was the first to represent a murine
model of MH. These mice experienced whole body con-
tractions and elevated core temperatures in response to
isoflurane exposure or heat stress without uncompen-
sated SR calcium leak or store depletion. In the same
year, Yang and colleagues created another valid MH sus-
ceptible RYR1 knock-in mouse heterozygous for R163C
[109]. The R163C heterozygous mouse SR membranes
have a twofold higher affinity (Kd = 35.4 nm) for [H]rya-
nodine binding compared with wild type.

2011–2012: a spectrum of RYR1-related myopathies (RYR1-
RM)
As histological phenotypes associated with RYR1 varia-
tions can continually evolve over time in the same pa-
tient or vary in individuals with the same variant,
terminologies that include these features might not be
appropriate for specific designations [110]. The expand-
ing histopathologic (from normal biopsy findings in MH

susceptible individuals, histology typical of CCD, MmD,
CNM, and CFTD, to cores in MH susceptible individ-
uals, type 1 fiber predominance, and mixed histopath-
ology of cores and rods) and emerging RYR1-RM
phenotypes were the focus of the European Neuromus-
cular Centre (ENMC) international workshops in 2011
and 2016 [27, 111]. These consensus-building workshops
delineated RYR1-RM as a spectrum of clinical and
pathologic phenotypes, with histolopathologic features
ranging from subtle abnormalities such as increased in-
ternalized nuclei to prominent and extensive structural
cores. The wide range of RYR1-RM histopathological
features, with mild myopathic changes and irregular oxi-
dative staining in the late-onset phenotypes and more
frequent detection of cores in the congenital myopathies,
is suggestive that both are part of a similar spectrum
[30]. With reports of adult-onset phenotypes [39, 40]
resulting from increased availability of diagnostic exome
and whole gene RYR1 sequencing [112], the full
spectrum extends beyond birth and early childhood. A
confounding factor in assessment of late-onset cases is
advancing age, as aged muscle exhibits varying degrees
of increased intramuscular fat content on MRI, muscle
fiber atrophy and loss, tubular aggregates, and gradual
increases in ragged red fibers and cytochrome c oxidase-
negative fibers [113].

2015–2016: advances in RyR1 structure-function
The molecular architecture of RyR1, solved using a
combination of cryo-electron microscopy (cryo-EM)
and x-ray crystallography of soluble subdomains, re-
veals a homotetrameric complex with a molecular
weight of 2.25 million Da, consisting of four proto-
mers (~ 565 kDa each) that interact with other regu-
latory proteins and ligands [114, 115]. Advancements
in cryo-EM and direct electron detector (DED) tech-
nology enabled the most comprehensive 3D recon-
struction of this 5038-amino acid structure to date.
Indeed, between 2015 and 2016, a series of studies
reported RyR1 structure at near-atomic resolution,
ranging from 3.6 to 4.8 Å [114, 116–118]. The cryo-
EM reconstructions revealed binding sites for chan-
nel agonists and antagonists, as well as the structural
basis of channel gating and ligand-dependent activa-
tion. Cytoplasmic interacting proteins (e.g., FKBP12
or calstabin1 and calmodulin or CaM) and SR pro-
teins (e.g., triadin and junctin) bind and regulate
RyR1 channel activity [119]. In the absence of chan-
nel activators (Ca2+, ATP, caffeine), the RyR1 core is
rigid and remains in a closed state. In contrast,
channel activator binding at different sites on the
RyR1 C-terminal domain (CTD) serves to increase
transition to and stability of the channel open state
[118].
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2018: completion of the first RYR1-RM natural history study
and clinical trial
There is no approved treatment for RYR1-RM. Symptom
management is primarily supportive, with precautions
taken when MH risk is either known or not ascertained.
There have been anecdotal reports of positive responses
to pyridostigmine, an acetylcholinesterase inhibitor, im-
proving fatigue and energy level [43], and salbutamol, a
beta agonist that improves muscle strength and motor
function through mechanisms that are not completely
understood [120]. Development of patient registries for
clinical trial recruitment and funding support from
patient advocacy groups such as the Muscular Dystrophy
Association (MDA), the RYR-1 Foundation, CureCMD,
and congenital muscle disease international registry
(CMDIR) have been instrumental in supporting thera-
peutic development for neuromuscular diseases. The
first clinical trial for RYR1-RM was conducted in ambu-
latory individuals and included a 6-month lead-in
natural history phase followed by 6-month intervention
with the antioxidant N-acetylcysteine (NAC) [121]
(NCT02362425). The rationale for this clinical trial was
evidence that NAC rescued elevated oxidative stress and
decreased myopathy in murine [122] and zebrafish
model systems [123, 124]. All participants exhibited
elevated oxidative stress as determined by urine 15-F2t-
isoprostane concentration and decreased physical en-
durance. However, oral treatment with NAC did not im-
pact either outcome [121]. Other therapeutic research
opportunities investigating the efficacy of modulators of
calcium release from the SR are underway globally. For
RYR1-RM-affected individuals, a phase 1 clinical trial
testing safety of the RyR stabilizing Rycal molecule
S48168 (ARM210) is underway (NCT04141670). More-
over, several drugs already approved for other indica-
tions are in the clinical trial pipeline for potential re-
purposing, and novel compounds, identified by high-
throughput screening, are being tested in pre-clinical
studies [125–127]. The recent generation of murine
model systems that more closely depict RYR1-RM clin-
ical phenotypes [128, 129] and greater understanding of
RyR1 structure-function [130] will play a crucial role in
identifying RYR1-RM-affected individuals who could
benefit most from specific therapeutics. However, the
heterogenous nature of the disease suggests that a single
treatment is unlikely to be universally efficacious.

Current state of knowledge and differential diagnoses
Central core disease (CCD)
Cores associated with RYR1 variations may be structured
or unstructured based on ATPase activity levels (posi-
tive, structured; absent, unstructured) and myofibrillar
disruption. These cores are typically seen in type I fibers
with significant fibro-adipose infiltration [131]. RYR1-

associated CCD is predominantly an autosomal dominant
condition. In autosomal dominant and de novo cases of
CCD, RYR1 variations predominantly affect the RyR1 C-
terminal region [56]. RYR1 variations resulting in CCD
and MH susceptibility were initially reported to primarily
localize in three “hot spot” regions (or domains): domain
1 (N-terminal residues 1–614), domain 2 (central residues
2163–2458), and domain 3 (C-terminal pore/transmem-
brane residues 4136–4973) [3, 56]. However, more recent
information indicates that dominant RYR1 variations can
span the entire length of the gene [111].
The clinical features of CCD are variable, and approxi-

mately one third of individuals with central cores do not
exhibit an overt clinical phenotype [132]. Clinical char-
acteristics of autosomal dominant CCD include hypo-
tonia, developmental motor delay, proximal weakness,
myalgia, and orthopedic complications such as scoliosis
and hip girdle dislocation. Cardiac, bulbar, and moderate
to severe respiratory involvement are rare [6]. Infantile
and early childhood presentation with proximal weak-
ness in the hip girdle is typical [55] and, although typic-
ally stable over time, slow disease progression has been
reported later in life [133]. Recessive cases of CCD are
rare but can present with more severe features including,
arthrogryposis, respiratory distress and fetal akinesia [29,
134]. CCD is considered allelic to MH susceptibility,
which is also predominantly associated with a dominant
mode of inheritance [53]. Given this genetic connection,
a subset of individuals with CCD diagnoses are MH sus-
ceptible, and a subset of MH susceptible individuals
present with cores on their muscle biopsies [13]. RyR1
channels with MH- or CCD-associated variants show
higher activity and sensitivity to activation than wildtype
channels, which ultimately leads to increases in resting
Ca2+ concentration [135, 136]. Clinical and histopatho-
logic findings in RYR1-RM-affected individuals are
widely variable and often also present in other congeni-
tal myopathies. Greater than 90% of cases with typical
CCD clinical manifestations and histopathology result
from RYR1 variations [56]. However, structures similar
to cores are also observed in ACTA1-associated myop-
athy [137]. Target fibers may be confused with central
cores as they are characterized by absence of oxidative
enzyme activity, paucity of mitochondria, and dis-
organized myofibrils in the center, surrounded by a rim
of more intense than normal activity on immunohisto-
chemical staining of muscle biopsy [138, 139].

Core-rod myopathy
Although histologically distinct, the presence of cores
and rods in the same muscle biopsy examination has
been described in other cases with RYR1-RM [110, 140].
RYR1 variations are the most common cause of core-rod
myopathy and both dominant and recessive forms have
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been described [110, 141]. Variations in the NEB [142]
and KBTBD13 [143] genes have also been implicated in
core-rod myopathy, with KBTBD13-related forms associ-
ated with slow muscle movement and proximal weak-
ness [116, 144]. Other genes associated with nemaline
myopathy include ACTA1, TPM3, TPM2, TNNT1, and
CFL2. Kondo and colleagues reported on a patient diag-
nosed with severe congenital nemaline myopathy and
compound heterozygous variations in RYR1 [145]. Clin-
ical manifestations of this patient included fetal akinesia,
severe generalized hypotonia, narrow face with facial
muscle weakness, persistent ophthalmoplegia, frog-leg
posture, poor-anti-gravity limb movements, respiratory
insufficiency, and an improving clinical course [145].
Histologically, nemaline bodies (observed as numerous
small rods) were observed in the cytoplasm but not in
the nuclei, and small type 1 fibers without central nuclei,
fiber degeneration, or cellular infiltration were noted. No
central cores or minicores were observed in this patient.
The absence of cores and the presence of nemaline rods
may differentiate this case from previous reports of re-
cessive RYR1 cases but could also be reflective of delay
in core presentation on muscle histology in young
patients [146, 147]. Identification of cores or minicores
on later biopsies would therefore classify this case as a
recessive core-rod myopathy, which is most commonly
associated with RYR1 variations [140].

Centronuclear myopathy (CNM)
Mitochondrial oxidative enzyme activity is either con-
centrated or absent in the centrally nucleated fibers
(core-like areas) [148]. The case reported by Spiro
and colleagues could be attributable to variation(s) in
one of the genes associated with CNM. Of the nine
genes currently associated with CNM (RYR1, MTM1,
DNM2, BIN1, TTN, MTMR14, SPEG, CCDC78, and
CACNA1S), RYR1 variants are the most common
cause of autosomal recessive CNM [28]. CNM symp-
toms predominantly affect skeletal muscles. Clinical
features of RYR1-related CNM include extremity
muscle weakness (typically severe), foot abnormalities,
scoliosis, ophthalmoparesis, and mild to severe re-
spiratory involvement [146]. In individuals with
CNM, disease severity is extremely variable with the
majority of cases exhibiting compound heterozygous
changes. Variations in the MTM1 gene should be
investigated first in severely affected males, with
analysis of cDNA from muscle tissue recommended
if a variation is not identified on genomic DNA [57].
Females with MTM1-related CNM may present with
necklace fibers as a histologic marker [149]. DNM2
variations should be investigated first if there is a
clear autosomal dominant family history or de novo
variant [2, 150].

Congenital fiber-type disproportion (CFTD)
As Brooke’s definition of > 12% FSD rendered CFTD a
non-specific diagnosis, FSD greater than 35–55% with
clinical features consistent with CM is currently used as
a diagnostic criterion [151]. Both dominant and recessive
cases of RYR1-related CFTD have been reported [59].
Clinical features reported in CFTD patients include
hypotonia, respiratory failure, non-progressive muscle
weakness, joint contractures, myopathic facies, ophthal-
moparesis, feeding difficulties, and skeletal deformities
[59, 152]. It is important to note that many patients ini-
tially diagnosed with CFTD develop rods, cores, and
central nuclei over time, leading to specific diagnoses
that supersede the initial CFTD diagnosis [2, 151]. With
an autosomal dominant mode of inheritance, TPM3 is
the most common genetic cause of CFTD (25–50% of
cases) [58]. RYR1-related CFTD is an autosomal reces-
sive disease accounting for about 20% of CFTD cases
[59]. ACTA1 and TPM2 are also uncommon causes of
CFTD [153, 154].

Multi-minicore disease (MmD)
The variability associated with the appearance of cores
on muscle biopsy led to subsequent reports of multicore
disease with various nomenclatures (minicore myopathy,
multicore myopathy, multi-minicore myopathy) until a
working group of experts agreed on a designation of
multi-minicore disease (MmD) [61]. Multi-minicores
may affect both type 1 and type 2 muscle fibers and
show depletion or absence of mitochondria on electron
microscopy, with variable degrees of myofibrillar
disorganization, abnormal Z-band material, and regions
of sarcomeric disruption. Increased internal nuclei, fibers
with slow myosin (type 1 predominance on histochem-
ical stains), prominent connective tissue and adipose
tissue in the absence of numerous fibers with develop-
mental myosin, necrosis or endomysial fibrosis are also
noted in affected muscles [141, 155]. RYR1-related
MmD is inherited in an autosomal recessive pattern with
highly variable clinical features [156]. Typical features
include hypotonia in infancy, axial muscle weakness, hip
girdle weakness, ophthalmoplegia, distal joint laxity,
progressive scoliosis, and moderate respiratory/bulbar
involvement. Four homogeneous MmD groups have
been identified: (1) the classic form, marked by pre-
dominantly axial muscle weakness, especially neck
flexors, scoliosis, respiratory insufficiency, and limb joint
hyperlaxity; (2) the ophthalmoplegia form, with general-
ized muscle involvement and severe facial weakness; (3)
an early-onset form with arthrogryposis; and (4) a slowly
progressive form with hand amyotrophy [157]. Other
genes associated with MmD include SEPN1 [60], MYH7
[158], and TTN [159]. Pathogenic variants in SEPN1 and
RYR1 are responsible for approximately 50% of all cases
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and SEPN1 variations comprising ~ 75% of the classic
form of MmD [60]. RYR1 variations are mostly asso-
ciated with both the moderate form of MmD with hand
involvement and the ophthalmoplegic form [156, 160],
both of which typically present as milder than classic
SEPN1-associated MmD. Multi-minicores associated
with SEPN1 variations are typically smaller in size than
those observed in recessive RYR1-related cases [131] and
are accompanied by non-specific myopathic changes
such as CFTD and Mallory body-like inclusions [161,
162]. Malignant hyperthermia and ophthalmoplegia are
not usually noted in SEPN1-related myopathies [163].
On MRI, there is prominent involvement of the sartorius
muscle in the thigh, and in more severe cases, the pat-
tern of thigh involvement show similarity with that seen
in RYR1-RM [164]. MYH7-, DES-, LMNA- and TTN-re-
lated core myopathies are recessive, progressive, and
often present with severe cardiomyopathy that can be
independent of respiratory insufficiency [158, 159, 165,
166]. Joint hypermobility, although more often a sign of
connective tissue disorders, can be a prominent clinical
feature of RYR1-related core myopathies [167]. Add-
itionally, the presence of a large number of muscle fibers
(up to 50%) with internal or central nuclei has been
reported as part of the RYR1-related core myopathy
spectrum [168]. Minicores are also non-specific features
of congenital muscular dystrophies, dystrophinopathies,
neuropathies, short-chain acyl-COA dehydrogenase
deficiency, Marfan syndrome, and cardiomyopathies [2,
160]. Nemaline bodies with core-like areas have been
described in dominant ACTA1-related myopathy [169]
and in a family with recessive CFL2 variations [170].
Multiple core-like areas per fiber were reported in type-
1 fibers in DOK7-associated congenital myasthenic
syndromes [171] and RYR1-associated atypical periodic
paralysis [35]. “Moth-eaten” fibers described in certain
muscular dystrophies can also be considered core-like
lesions [172]. However, these small core-like lesions are
often not confirmed with electron microscopy compared
with multiple minicores. Variations in MYH7 and TTN
should be considered if there is an associated
cardiomyopathy.

Proposal for a unified nomenclature
The similarity in muscle histopathology and clinical
symptomatology across RYR1-RM subtypes, currently
viewed as nosocologically distinct entities, reflects a wide
range of manifestations resulting from defects in the
same gene. Specifically, patient severity occurs on a
spectrum and is often evaluated in the context of mode
of inheritance, histopathology, and clinical phenotype
(Fig. 2). A combination of factors has made understand-
ing and describing muscle disorders associated with
RYR1 variants confusing for health care providers,

researchers, and patients/families. Moving forward, we
therefore propose the term “RYR1-related disorders (or
RYR1-RD)” as a single nomenclature to unify this com-
plex myopathic/non-myopathic and congenital/non-con-
genital spectrum with the goal of minimizing the
following known issues.

Dynamic and overlapping histopathology
Historical classification and diagnosis of newly emerging
RYR1-RD based on clinico-histopathologic features
are complicated because findings often overlap with
previously identified phenotypes. The histopathologic
features used to diagnose RYR1-RD are variable over
time, and therefore, subject to inconclusive findings.
The degree of pathological changes may vary by
biopsy site or age of the individual when the biopsy
was obtained. Very young patients may not present
definitively with cores until later in life [173] and
some CCD cases with MH susceptibility may not
present with cores [131]. Clinical features of domin-
ant CCD typically present on the milder end of the
phenotypic spectrum including hypotonia, muscle
weakness, and skeletal abnormalities in the absence of
cardiac involvement [131]. However, the rare cases of
recessive CCD that often exhibit a more severe clinical
presentation [174, 175] do not always correlate with
histopathologic findings [42].

Delayed diagnosis
Diagnosis is delayed and difficult when nosocologically
defining histopathologic features are absent, and in cases
with dual morphologic presentations such as core-rod
myopathy [131]. Also, the absence of diagnostic mor-
phologic features on muscle biopsy does not exclude a
likely pathogenic variation in RYR1 [61]. With nearly
700 RYR1 variations identified to date [176], availability
and access to exome sequencing and genetic testing of
the entire RYR1 gene can be credited for early and faster
diagnosis [177], and expansion of the RYR1 disease
spectrum [178]. A recent RYR1-RM natural history study
[179] revealed that affected individuals born before the
advent of next-generation sequencing (2004) were typic-
ally diagnosed as adults, while those born after 2004
were generally diagnosed in early childhood. Addition-
ally, homozygous or compound heterozygous probands
often exhibit a profound myopathic phenotype, while
heterozygous probands might only experience a trig-
gered phenotype. A genetics-first diagnostic approach is
rapidly becoming the standard for confirmation of dis-
orders with known genetic etiology [112, 180]. Never-
theless, the limited sensitivity of next-generation
sequencing, requirement for multiple testing in some
cases, and interpretation of large numbers of identified
VUS in a relatively large gene such as RYR1 still requires
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a robust knowledge of the suggestive features associated
with each variant. Although complete reliance on histo-
pathologically defined entities such as central cores,
multi-minicores and central nuclei is arguably outdated,
these muscle biopsy findings remain valuable as diagnos-
tic indicators of disease subclassification that are not
otherwise feasible from genetic findings alone. RYR1-RD
affected individuals exhibit specific and valuable initial
patterns of clinical and histopathologic presentations
that can facilitate early diagnosis. As the possibility of an
inherited process is not always apparent [181], clinical,
histopathologic, and genetic information still need to be
evaluated together in order to reduce the diagnostic
odyssey of patients and their families [182].

Adult-onset phenotypes
RYR1-RD are typically considered primarily early child-
hood-onset conditions with proximal or generalized
muscle weakness. Recent identification of adult-onset
subtypes reflects a departure from the long-held defin-
ition of this group as strictly “congenital myopathies”
[39, 40]. Considered a late neuromuscular manifest-
ation of MH-related RYR1 variations, late-onset axial

myopathy, exertional rhabdomyolysis, and periodic
paralysis present throughout the lifespan. Late-onset
RYR1-RD present significant diagnostic and genetic
counseling challenges, as well as implications for proper
anesthetic management of patients and their family
members. True adult-onset cases are difficult to estab-
lish as the affected individual could have either toler-
ated or been in denial of mild symptoms experienced
during childhood. RYR1-RD phenotypes are still pre-
dominantly early childhood onset, and excluding the
“congenital” descriptor does not detract from their clas-
sification as CM. However, awareness of these adult-
onset subtypes allows: (a) clinicians to consider RYR1-
RD in the differential diagnostic process across all ages
even in neuromuscular disease cases without prior
muscle biopsy findings [39], (b) inclusion of older
adults in clinical trials testing novel therapies, and (c)
collection of more robust natural history data on RYR1-RD
across the lifespan [37].

Shared calcium dysregulation
RYR1-RD result from varying disease pathomechanisms
that collectively share alterations in a common

Fig. 2 Overview of the RYR1 disease spectrum. At time of presentation, clinical severity can vary according to mode of inheritance (dominant, de
novo, recessive), histopathologic features, and phenotypes ranging from severe neonatal onset to mild non-progressive muscle weakness.
Recessive cases are typically more severe than dominant cases. The majority of histopathological features are associated with more severe clinical
phenotypes, though this may not hold true for the core myopathies. Emerging clinical phenotypes associated with RYR1 variations also vary
in severity
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pathway—intracellular calcium dysregulation resulting
from primary RyR1 dysfunction (e.g., reduced RyR1 ex-
pression, leaky RyR1 channels, impaired RyR1 interdo-
main interactions, enhanced sensitivity to modulators,
impaired excitation-contraction coupling) [6, 22]. Alter-
ations in calcium homeostasis can also lead to secondary
cellular dysfunction including increased oxidative/nitro-
sative stress, altered post-translational modifications,
mitochondrial damage, and disrupted protein-protein/
ligand interactions [3, 122, 183]. These downstream ef-
fects further drive myopathy and enhance heat respon-
siveness due to a feed-forward loop [11]. However,
RyR1- or cellular/mitochondrial-based calcium dysregu-
lation such as increased mitochondrial calcium uptake,
production of damaging reactive oxygen species [3, 122,
183] and upregulation of endoplasmic reticulum stress/
unfolded protein response [184], may be RYR1 variant
dependent.

Discussion
The complex nature of the RyR1 protein, coupled with
the expanding and overlapping disease spectrum of
RYR1-RD, presents a timely opportunity to consider a
unified nomenclature and classification system for this
heterogeneous group of disorders. Here, we propose the
use of “RYR1-related disorders (RYR1-RD)” as a single
nomenclature to unify this complex myopathic/non-
myopathic and congenital/non-congenital spectrum.
Any acceptable change in nomenclature will require a

careful, widely discussed and expansive evaluation by
experts in the field of neuromuscular disorders. A com-
prehensive classification system would both incorporate
the different disease pathomechanisms associated with
RYR1-RD and identify potential consequences that may
not be immediately apparent. A unified nomenclature is
needed for multiple reasons, but most importantly to
facilitate unambiguous communication about related
conditions among clinicians, researchers, patients, and
the lay public. A relevant example in the neuromuscular
disease field is the consensus naming and classification
of multi-minicore disease (MmD) by a panel of experts
[157]. Following the first reports of MmD [89], numer-
ous cases with variable clinical expression and morpho-
logical lesions were reported. This led to multiple
histologic descriptors including multicore disease, focal
loss of cross-striations, minicore myopathy, myopathy
with multiple minicore, or pleocore disease to describe
the same disease subtype [60]. In comparison to rela-
tively more homogeneous disorders such as SEPN1-RM
[60] and COL6-RM [185] where gene-based nomencla-
tures were introduced, there is an inherent possibility
that a single nomenclature for such a clinically and
histopathologically heterogeneous group of disorders

may be seen or interpreted as having the same pathome-
chanisms and genotype-phenotype correlations.
RYR1-RD subtypes also present clear clinicopathologi-

cal and mode of inheritance differences. For example,
there are no reported pedigrees with unequivocal evi-
dence for multigenerational dominant inheritance of
RYR1-related CFTD and CNM, both overwhelmingly as-
sociated with recessive RYR1 variations. Individuals with
core-rod myopathy present with excess ryanodine recep-
tor levels in the cores [140], while MmD and recessive
forms of CCD exhibit a marked reduction in RyR1 pro-
tein expression [186]. Although type 1 fiber predomin-
ance and hypotrophy are observed in most cases, type 1
fiber uniformity without structural changes (cores and
rods) is found in over 99% of the type 1 muscle fibers in
certain cases with C-terminal RYR1 variants [33]. From
a clinical perspective, extraocular muscle involvement is
almost exclusively associated with recessive forms of
RYR1-RD, whereas enhanced malignant hyperthermia
susceptibility is more commonly seen with dominant ra-
ther than recessive RYR1 variations [187].
Additionally, some degree of dysfunction in calcium

homeostasis and/or E-C coupling is a shared pathome-
chanism among RYR1-RD. The effects of specific RYR1
variants on these mechanisms depend on mode of inher-
itance and location on the gene [179]. Therapeutic de-
velopment for RYR1-RD aiming to prevent RyR1
calcium leak may not be beneficial and could potentially
be detrimental, in the context of dominant variants that
reduce RyR1 calcium conductance or recessive variants
that lead to a dramatic reduction in RyR1 expression.
The different pathomechanisms caused by RYR1 varia-
tions (e.g., hypersensitivity, enhanced calcium leak, E-C
uncoupling, decreased RyR1 channel expression) [6] and
the prospect of distinct therapeutic approaches needed
to combat these different underlying disease mechanisms
are seemingly at odds with the concept of a unified
nomenclature. Finally, unified nomenclature may have
unintended negative implications for research funding
opportunities from patient advocacy organizations focused
on specific congenital myopathies and may present chal-
lenges in formulation of treatment, biomarkers, and/or
clinical outcome measures across subtypes with pathome-
chanisms that affect varying stages of cellular functions.
This could slow the pace of drug development and treat-
ment approval by regulatory agencies.
In our opinion, a unified nomenclature should not

only encompass the complex clinical and pathological
features associated with RYR1 variations (including
conditions that do not exhibit an overt myopathy such
as MH susceptibility and exertional rhabdomyolysis), but
also both accommodate future RYR1-related phenotypes
and navigate the field away from utilizing non-specific
histopathologic eponyms (Fig. 3).
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Conclusion
Historically, RYR1-RD have been named and diagnosed
based largely on histopathologic findings on muscle
biopsy. However, the emergence of new subtypes along
the RYR1 disease spectrum complicates diagnoses. As a
“genetics-first” approach to inherited disease diagnosis is
becoming widely accepted, neuromuscular disorders
such as RYR1-RD need established guidelines and con-
sensus principles for classification and naming of emer-
ging phenotypes. The proposal for RYR1-RD as the
unifying nomenclature is a first step and could be super-
ceded by a better encompassing terminology. We believe
that such a discourse is timely and needed for this
widely heterogeneous group of muscle disorders.
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