Respiratory Management in RyR1 Myopathy

Oscar Henry Mayer, MD
Medical Director, Pulmonary Function Testing Laboratory
Division of Pediatric Pulmonology
The Children's Hospital of Philadelphia

Sunday, June 24, 2017

Outline

- Progression of Respiratory Disease
- "Timeline" of progression
- Treatment Options

Progression of Disease

Respiratory Muscle Weakness

Respiratory Failure

Respiratory Failure

Progression of Disease

Progression of Disease

Assisted Airway Clearance

Coughing

- Inspiratory
 - Deep breath to get air beyond secretions
 - Stretch expiratory muscles
- Compressive increased pressure
 - Exhalation against closed glottis
- Expulsive mobilization
 - Rapid expiratory flow (> 270 L/m)

Support Weak Cough

- Inspiratory Assistance
- Expiratory Assistance
- Inspiratory / Expiratory Assistance

Inspiratory Assistance

- Breath Stacking
 - Oronasal Mask / One Way Valve
 - Intact inspiratory muscle strength
 - Resuscitation Circuit Bag and Mask
 - Requires pharyngeal function
- Intermittent Positive Pressure Breaths

Inspiratory

Expiratory Assistance

- Chest Wall Compression
- Abdominal Compression
- Chest Wall and Abdominal Compression

Expiratory Assistance

Manually Assisted Cough

Rest

Exhalation

Inspiratory & Expiratory Assistance

- Breath stacking / Manually Assisted Cough
- Mechanical In-Exsufflator (Cough Assist®)

Inspiratory & Expiratory Assistance

- Cough Assist
 - Cycle
 - Pi 15-50 cm H₂O
 - Apply Pi for 2-3 seconds
 - Pe 15-50 cm H₂O 1-2 sec
 - 5 cycles Suction 5 sets

Expiratory

Cough Assist

Table 2—Peak Expiratory Flow Rates During Assisted and Unassisted Coughing

Case	Unassisted, L/s	Stack, L/s	Assisted, L/s‡	Exsufflator, L/s§
1	0.00	4.53*	5.39	6.10
2	2.97	4.40*	7.90	6.21
3	3.28	3.54*	3.28	7.81
4	1.83	3.12†	4.72	8.17
5	2.24	5.00†	4.03	6.48
6	0.00	2.93*	3.92	7.46
7	1.38	3.57*	3.18	7.46
8	2.07	3.03†	4.80	7.28
9	2.28	3.62*	4.58	6.75
10	2.10	2.44†	2.60	6.20
11	0.97	1.70†	4.22	7.46
12	1.66	3.14†	4.62	8.14
13	4.02	4.44†	4.77	7.46
14	2.33	4.50†	4.37	7.48
15	3.34	4.70†	4.92	7.78
16	0.97	1.78†	2.58	8.17
17	1.02	1.48†	3.32	6.42
18	1.00	2.25†	2.25	9.23
19	1.50	2.40†	4.40	7.80
20	1.51	4.33*	6.33	9.11
21	1.58	3.88*	3.68	7.81
$Mean \pm SD$	1.81 ± 1.03	3.37 ± 1.07	4.27 ± 1.29	7.47 ± 1.02

Should be above 4.5 L/s

Ventilation

What is Ventilation?

- Bring oxygen into the blood stream
- Remove carbon dioxide produced
 - Maintain acid-base balance
- Cyclic aeration of the lung to remove secretions

Clinical Symptoms of Respiratory Failure

- Morning headaches
- Inadequate Rest
 - Daytime fatigue
 - Failure to thrive
- More rapid loss of function

How to Evaluate Ventilation

- Hypoventilation
 - High Carbon Dioxide
- Night time hypoventilation before daytime
 - First occurs in REM sleep
- Full Sleep Study / 16-Channel Polysomnogram

Sleep Study

Sleep Study

ETCO2 Intervals	>60	50-60	45-50	35-45	<35
Sleep Time (%)	0.0	17.2	81.1	1.7	0.0

ETCO2 & TCCO2 Summary

	Maximu	m (Torr)	Mean (Torr)		
	ETCO2	TCCO2	ETCO2	TCCO2	
Awake	52	50	44	44	
REM	50	49	47	47	
NREM	53	54	49	48	
Total Sleep	53	54	48	48	

Oxygenation Summary

SpO2 %	>= 95%	< 95%	< 92%	< 90%	< 88%	< 85%	< 80%	< 70%	< 60%
Sleep Time(minutes)	300.8	60.1	3.6	0.2	0.0	0.0	0.0	0.0	0.0
Sleep Time (%)	82.6	16.5	1.0	0.1	0.0	0.0	0.0	0.0	0.0

	SpO2 Min. (%)	SpO2 Max (%)	SpO2 Mean (%)
REM	92	99	97
NREM	88	99	97
Total Sleep	88	99	97

Respiratory Event Summary										
				Obstructive		OAHI	Central		CAHI	Total
			Apnea	Нурор	_ Mixed		Apnea	Нурор		
Total		Count	1	10	0	11	7	0	7	18
Index		Index	0.2	1.6	0.0	1.8	1.2	0.0	1.2	3.0
REM C	Count	0	2	0	2	0	0	0	2	
		Index	0.0	1.7	0.0	1.7	0.0	0.0	0.0	1.7
Position	Supine	Count	0	3	0	3	6	0	6	9
(all stages)		Index	0.0	0.8	0.0	0.8	1.6	0.0	1.6	2.4
Prone	Prone	Count	1	5	0	6	1	0	1	7
	Index	0.6	3.0	0.0	3.7	0.6	0.0	0.6	4.3	
	Side	Count	0	2	0	2	0	0	0	2
		Index	0.0	2.9	0.0	2.9	0.0	0.0	0.0	2.9

Sleep Study

ETCO2 Intervals	>60	50-60	45-50	35-45	<35
Sleep Time (%)	0.0	17.2	81.1	1.7	0.0

ETCO2 & TCO2 Summary

	Maximui	m (To	r)	Mean (Torr)		
	ETCO2	TC	O2	ETCO2	TCCO2	
Awake	52	£)	44	44	
REM	50	4)	47	47	
NREM	53	5		49	48	
Total Sleep	53	5		48	48	

Oxygenati Summary

SpO2 %	>= 95%	< 95%	< 92%	< 90%	< 88%	< 85%	< 80%	< 70%	< 60%
Sleep Time(minutes)	300.8	60.1	3.6	0.2	0.0	0.0	0.0	0.0	0.0
Sleep Time (%)	82.6	16.5	1.0	0.1	0.0	0.0	0.0	0.0	0.0

	SpO2 Min. (%)	SpO2 Max (%)	SpO2 Mean (%)
REM	92	99	97
NREM	88	99	97
Total Sleep	88	99	97

Nocturnal Pulse Oximetry is Not a Viable Alternative

Caution in Diagnosis

- Significant vs. Non-Significant hypercarbia
 - Is EtCO2 > 50 for < 20% sleep time Normal?
- Patients are typically studied when well
 - What about during illness?
- Distinguish hypoventilation from obstructive sleep apnea

How to Support

How not to support

- Supplemental Oxygen
- High-Flow Nasal Cannula Air or Oxygen
- Continuous Positive Airway Pressure (CPAP)

What is Required for Ventilation?

- Interface
 - Nasal
 - Oronasal / Facemask
 - Oral
 - Chest Negative Pressure Ventilation
- Bi-Level Pressure Generator

Interface

Mouthpiece Ventilation

Tracheostomy Tube

Interface

- Fit mask to patient's face
 - Experienced Nurse / Therapist
- Assess for comfort / pressure points
- Desensitization

How to Initiate Ventilation

- Equipment
 - Interface Nasal / Oronasal
 - Ventilator
- Titration ideally with patient's equipment
 - Clinical
 - Sleep Study

Successful Ventilation Initiation

- Patient tolerance
 - Immediate
 - Ongoing
- Parent / Caregiver Training & Competence
- Follow-up to insure adequacy of support
 - May change with clinical status

Ventilation Outcome

Gas Exchange

Use of a Tracheostomy Tube

- Absolute Indication
 - Incompetent upper airway / inability to be extubated
- Relative indications for tracheostomy tube
 - Interface problems skin integrity
 - Facial interface refusal / intolerance
- Duration of NIPPV is not an absolute indication
 - Alter interfaces

Progression of Disease

- Adjust level and amount of NIPPV support based on patient's need
- No advantage to more NIPPV support (duration or pressure) than is needed
- Be aware that normal ventilation when well does not insure normal ventilation when acutely ill

Progression of Disease

Acute Illness

Conclusion

- The onset of respiratory symptoms can be subtle
- Because the first onset can occur during an acute illness it is important to be prepared and proactive
- There are a variety of effective options to support airway clearance and ventilation
- Treatment needs to be fit to the patient not the patient fit to the treatment

mayero@email.chop.edu

Clinical Titration

- Normalize CO2
 - Continuous EtCO2 / TcCO2 at night
- Chest Wall Motion Maximize excursion
- Symptom Improvement
 - Quality of Sleep
 - Morning Headaches

Sleep Study Titration

- Titrate Pi and Pe to
 - Improve hypercapnea / oxygenation
 - Improve work of breathing
 - Thoracoabdominal asynchonry
- Diagnosis & titration may not be feasible together

Physiologic Titration

- Reduce EtCO2 by 5% with maximal Pi and Pe
- Reduce work of breathing using Pi and Pe

TABLE 3. SLEEP DATA DURING MECHANICAL VENTILAT
--

	US	PHYS	p Value
TST, min	281.1 ± 41.6	346.4 ± 99.9	n.s.
SE, % of TST	66.5 ± 22.4	80.7 ± 9.6	0.01
SWS, % of TST	17.7 ± 9.81	25.1 ± 10.8	n.s.
REM, % of TST	8.9 ± 7.4	17.3 ± 5.4	< 0.05
Arousal index, events/h	29.9 ± 17.2	16 ± 12.6	0.01
ODI, events/h	27.5 ± 25.2	8.2 ± 8.5	< 0.05
Sa ₀₂ nadir, %	67.8 ± 14.3	85.5 ± 4.5	0.0009
TST ₉₀ , %	31.3 ± 29.8	7.2 ± 9	< 0.05
NREM ineffective efforts, events/h	62.5 ± 75.1	15 ± 20	< 0.05

Definition of abbreviations: NREM = non-REM sleep; ODI = oxygen desaturation index (number of desaturation episodes \cdot h of sleep or time in bed); PHYS = physiological setting; SE = sleep efficiency; SWS = slow wave sleep; TST = total sleep time; TST₉₀ = time spent with Sa₀₃ < 90% (% of total sleep time or time in bed); US = usual setting.

NIPPV Outcomes

- Acute Care
 - Successful support in 12 of 16 cases
 - NIPPV and aggressive Cough Assist treatment

Inspiratory Assistance

270 L/m

Preventative Management

Preventative Management

- Immunizations
 - Keep up to date with standard schedule
 - Seasonal Influenza Vaccination
 - No evidence for Palivizumab (RSV vaccine)
- Respiratory Range of Motion

Range of Motion

- Extend motion around joint to maximal
 - All directions
- Hold at point of maximal extension/flexion
 - Duration
- Repetition

Hyperinsufflation

Major Diagnoses	No. of Patients	Mean Age	Mean VCsit	Mean MIC	Mean LIC
DMD	53	26 (14-44) ± 7	$622(1-2710) \pm 595$	$1252 (220-3280) \pm 670$	$1696 (840-3400) \pm 548$
Myotonic	6	$47(36-53) \pm 7$	$2038 (1190 - 3580) \pm 864$	$2280 (1190-3720) \pm 874$	$2447 (1380 - 3850) \pm 851$
Other myopathies	55	$39(11-85) \pm 18$	$1195(270-2770) \pm 642$	$1741 (420-3360) \pm 825$	$2026 (500-3600) \pm 791$
SMA	31	$19(7-56) \pm 14$	$861 (30-2160) \pm 554$	$1254 (30-2780) \pm 748$	$1544 (320 - 3100) \pm 670$
Total	282	$42 (7-85) \pm 20$	$1131 (0-3580) \pm 744$	$1712 (30-5100) \pm 926$	$2069 (320-5400) \pm 867$

Inspiratory & Expiratory Assistance

Case	Unassisted, L/s	Stack, L/s	Assisted, L/s‡	Exsufflator, L/s§
1	0.00	4.53*	5.39	6.10
2	2.97	4.40*	7.90	6.21
3	3.28	3.54*	3.28	7.81
4	1.83	3.12†	4.72	8.17
5	2.24	5.00†	4.03	6.48
6	0.00	2.93*	3.92	7.46
7	1.38	3.57*	3.18	7.46
8	2.07	3.03†	4.80	7.28
9	2.28	3.62*	4.58	6.75
10	2.10	2.44†	2.60	6.20
11	0.97	1.70†	4.22	7.46
12	1.66	3.14†	4.62	8.14
13	4.02	4.44†	4.77	7.46
14	2.33	4.50†	4.37	7.48
15	3.34	4.70†	4.92	7.78
16	0.97	1.78†	2.58	8.17
17	1.02	1.48†	3.32	6.42
18	1.00	2.25†	2.25	9.23
19	1.50	2.40†	4.40	7.80
20	1.51	4.33*	6.33	9.11
21	1.58	3.88*	3.68	7.81
loon + CD	1.81 ± 1.03	2.27 ± 1.07	4 97 + 1 90	7.47 + 1.09

Mean \pm SD 1.81 \pm 1.03 3.37 \pm 1.07 4.27 \pm 1.29 (7.47 \pm 1.02)

Inspiratory & Expiratory Assistance

270 L/m

Toussaint, et. al. Respir Care 2009

Inspiratory Assistance

- Intermittent Positive Pressure Breathing
 - Pressure with maximal inspiratory volume
 - Hold volume for 1-2 Seconds

Intrapulmonary Percussive Ventilation

- High frequency oscillation under pressure
- Nebulization during treatment
- Performed during tidal breathing

Intrapulmonary Percussive Ventilation

NIPPV Outcome

Gas Exchange

NIPPV Outcome

Gas Exchange

NIPPV Outcomes

Sleep Quality

Table 2. – Influence of noninvasive ventilation (NIV) on sleepdisordered breathing and sleep

	Before NIV	During NIV	p-value
RDI·h ⁻¹	10.5±13.1	3.1±3.5	< 0.001
REM-RDI·h-1	20.5 ± 21.1	3.0 ± 5.3	< 0.001
Arousal index·h ⁻¹	20.6 ± 14.3	10.2 ± 3.8	< 0.001
Light-sleep %	55±12	44±13	< 0.05
Slow-wave-sleep %	24±9	34 ± 9	< 0.05
REM-sleep %	18±6	20±6	0.18

Two Approaches To Treatment

Two Approaches

- Reactive
 - Treat symptoms after they have occurred and are established
- Proactive / Preventative
 - Treat symptoms as early as possible as they are starting
 - Prevent symptoms from occurring at all

Reactive - Unaffected

- Cold symptoms start
- Nasal congestion
- Fever
- Cough
- Medication
- Resolution

Reactive - DMD

- Cold symptoms start
- Nasal congestion
- Fever
- Cough
- Medication
- Resolution

Reactive - DMD

- Cold symptoms start
- Nasal congestion
- Fever
- Cough
- Medication
- Resolution

- Poor cough
- Prolonged illness
- +/- Pneumonia

Proactive Approach

- Cold symptoms start
- Nasal congestion

Assisted Airway
Clearance

Proactive Approach

- Cold symptoms start
- Nasal congestion
- Fever
- Cough
- Medication
- Resolution

Assisted Airway
Clearance

Preventative Management

- Immunizations
 - Keep up to date with standard schedule
 - Seasonal Influenza Vaccination
 - No evidence for Palivizumab (RSV vaccine)
- Respiratory Range of Motion Dr. Sawnani

Proactive Management

- Cough a lot and cough early
- Insuring an effective cough
- Supporting an ineffective cough

Coughing

- Inspiratory
 - Deep breath to get air beyond secretions
 - Optimize length tension relationship of expiratory muscles
- Compressive increased pressure
 - Exhalation against closed glottis
- Expulsive mobilization
 - Rapid expiratory flow (> 160-180 L/m)

Augment Weak Cough

- Inspiratory Assistance
- Expiratory Assistance
- Inspiratory / Expiratory Assistance
- Other

- Intermittent Positive Pressure Breathing
 - Pressure with maximal inspiratory volume
 - Hold volume for 1-2 Seconds

Exhalatio patient

pacity of

- Breath Stacking
 - Oronasal Mask / One Way Valve
 - Intact Inspiratory Muscle Strength
- Intermittent Positive Pressure Breaths

- Chest Wall Compression
- Abdominal Compression
- Chest Wall and Abdominal Compression

Expiratory Assistance

Manually Assisted Cough

Rest

Exhalation

Toussaint, et. al. Respir Care. 2009.

- Breath stacking / Manually Assisted
 Cough
- Mechanical In-Exsufflator (Cough Assist®)

Major Diagnoses	No. of Patients	Mean Age	Mean CPF	Mean ACPF
DMD	53	26 (14-44) ± 7	$1.58 (0.1-5.7) \pm 1.7$	$3.76(0-6.2) \pm 1.4$
Myotonic	6	$47(36-53) \pm 7$	$4.03(2.7-4.7) \pm 0.8$	$5.10(4.4-5.9) \pm 0.6$
Other myopathies	55	$39(11-85) \pm 18$	$3.11(0.1-7.5) \pm 1.8$	$4.64(1.6-7.5) \pm 1.4$
SMA	31	$19(7-56) \pm 14$	$1.76 (0.1-4.6) \pm 1.5$	$3.54(1.7-5.5) \pm 1.1$
Total	282	$42(7-85) \pm 20$	$2.52 (0.1-9.7) \pm 2.0$	$4.28(0-9.7) \pm 2.2$

Toussaint, et. al. Respir Care. 2009.

Cough Assist

Cough Assist

Cycle

Pi 15-50 cm H₂O

Hold at Target Pi for 1-2 seconds

Pe 15-50 cm H₂O 1-2 sec

5 cycles

Suction

5 sets

Fauroux Chest 2008

Intrapulmonary Percussive Ventilation

- High frequency oscillation under pressure
- Nebulization during treatment
- Perfo

Intrapulmonary Percussive Ventilation

Intermittent Positive Pressure Breaths (IPPB)

- Apply inspiratory pressure
 - Hyperinflate lungs
 - Increase airway caliber
- Passive recoil
- Can be used with nebulization

