Myopathies and Muscular Dystrophies

Matthew P. Wicklund, MD, FAAN University of Colorado School of Medicine

Skeletal Muscle

- Three types of muscle:
 - Skeletal
 - Cardiac
 - Smooth
- Over 640 skeletal muscles in the human body

Anatomy of Skeletal Muscle

- Muscles
 - composed of
- Fascicles
 - which contain many
- Fibers
 - that are filled with
- Myofibrils
 - the contractile component of muscles

Nomenclature

Definition

- Muscular dystrophies are genetic, progressive, degenerative disorders of muscle
 - Muscle weakness is the primary symptom
 - Clinical and histologic criteria have been used in the past for classification

Definition

- Now muscular dystrophies are mostly classified on a genetic basis
- Thus, we often refer to them by the broader moniker of:
 - Genetic muscle diseases

Why Should We Care?

- 200+ genetic muscle diseases
- Overall minimum prevalence of symptomatic disease ~1 in 1,000 (100/100,000)
 - Similar to multiple sclerosis
 - Dystrophinopathies 23/100,000
 - Myotonic dystrophies 1 & 2 14/100,000
 - FSHD 18/100,000
 - LGMD 7/100,000
 - All others ~30/100,000

Pattern of Muscle Involvement Varies

Limb Girdle Muscular Dystrophies

Limb Girdle Weakness

 "Post-natal onset of progressive weakness and muscle atrophy affecting proximal muscles of the upper and lower extremities"

Limb Girdle Weakness

- >50 autosomal recessive LGMDs
- >10 autosomal dominant LGMDs

LGMD Relative Prevalence in USA

- Calpain-3 = 15%
- Dysferlin = 10%
- Sarcoglycans = 10%
- FKRP = 10%
- Anoctamin-5 = 10%
- Lamin A/C = 5%
- All others 40%
 - Extracellular matrix-related proteins
 - Pompe disease
 - VCP
 - RYR1-related myopathies

RYR1

Not uncommon among LGMD patients

22

Table 1	LGMD genes ²²		
Disease	Locus	Gene	No. of patients
LGMD1B	1922	LIMNA.	3
LGMD1C	3p253	GM/3	2
LG MD 2A	15q15	CAPN3	22
LGMD2B	2p13.2	DYSF	15
LGMD2C	13q12	SGCG	4
LGMD2D	17921	SGCA	10
LGMD2E	4q12	SGC8	6
LGMD2G	17q12	TCAP	1
LGMD2H	9q33.1	TR/M22	1
LGMD:21	19q13.3	RIRP	7
LGMD2J	2q243	TIN	5
LGMD2K	9q34.1	POMT1	1
LGMD2L	11p13	ANO.5	15
LG MD 2 M	9q31	RON	2
LGMD2N	14q24	POMT2	6
LGMD2R	2q35	DES	1
LGMD2S	4q35.1	TRAPPOID	2
LGMD2T	3p21	GMPPB	2
LGMD2V	17a25	GAA	10

Table 2 Other m	yapathy genes	
locus	Gene	No. of patients
194213	ACTA1	2
1µ21	AGL	2
219223	COL6A2	4
2q37	COLEAS	1
11q22.3-q23.1	CRYAB	1
Χμ21.2	DMD	7
19p13.2	DNM2	5
Xq28	EMD	1
7q32	FLAC	4
17925.2-925.3	GLA	1
3p12	GNE	3
3µ22.1	G7DC2	1
3q24	GYG1	1
12413.2	/TGA.7	2
6q22-q23	LAMA2	8
Xq28	M7M1	5
17µ13.1	MYH2	1
14q12	MY247	8
5q31	MYOT	1
2q23.3	NEB	9
11q12-q13.2	PYGM	3
20er13	RYR1	25

LGMD and Other Muscular Dystrophies

Multiple, overlapping phenotypes associated with numerous gene loci

Nomenclature (again)

Phenotype? Pathology? Genotype?

- Phenotype what does the patient look like?
 - Malignant hyperthermia or LGMD or exercise-induced rhabdomyolysis
- Histologic features what does the muscle biopsy look like?
 - Central core disease or multi-minicore disease or centronuclear myopathy
- Genetic what protein or gene needs fixing???
 - Ryanodine receptor related myopathy
 - RYR1-associated muscle disease

TREATMENT => Transition to Genetic Therapies

Successes in Genetic Therapies

- AON in DMD
- Viral vector gene therapy (DMD, LGMD 2B, 2C, 2D, 2E, 2L)
- Dual cassette viral vector mini-dystrophin
- Microdystrophin
 - In the GRMD model

Adeno-Associated Virus (AAV)

- Non-pathogenic
 - Invades cells, but no disease

• Of over 100 AAV serotypes

-Only ~6 widely used (AAV1, AAV5, AAV6, AAV8, AAV9, <u>AAVrh74</u>)

Adeno-associated Virus (AAV) is a Delivery Vehicle

Viral Genes are Removed From AAV

Non-Human Primate - Intramuscular

Sondergaard, P. C., Griffin, D. A., Pozsgai, E. R., Johnson, R. W., Grose, W. E., Heller, K. N., ... & Sahenk, Z. (2015). AAV. Dysferlin overlap vectors restore function in dysferlinopathy animal models. Annals of clinical and translational neurology, 2(3), 256-270.

Dose escalation in 6 non-ambulatory LGMD2B patients

Mendell, J. (2008). Gene Therapy for Muscular Dystrophy, A Decade of Research and Challenges.

LGMD2E Gene Therapy- Gene Replacement for Beta Sarcoglycan

Human Phase 2 Systemic Therapy Trial Underway

- => 2 subjects dosed
- 83-98% transfection rates

Successes in Genetic Therapies

- AON in DMD
- Viral vector gene therapy (DMD, LGMD 2B, 2C, 2D, 2E, 2F)
- Dual cassette viral vector mini-dystrophin
- Microdystrophin
 - In the GRMD model

Received 18 Aug 2016 | Accepted 30 May 2017 | Published 25 Jul 2017

DOI: 10.1038/ncomms16105 OPEN

Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy

Caroline Le Guiner^{1,2}, Laurent Servais³, Marie Montus², Thibaut Larcher⁴, Bodvaël Fraysse¹, Sophie Moullec⁵, Marine Allais¹, Virginie François¹, Maeva Dutilleul⁴, Alberto Malerba⁶, Taeyoung Koo⁶, Jean-Laurent Thibaut^{7,8}, Béatrice Matot⁷, Marie Devaux¹, Johanne Le Duff¹, Jack-Yves Deschamps⁵, Inès Barthelemy^{8,9}, Stéphane Blot^{8,9}, Isabelle Testault¹⁰, Karim Wahbi¹¹, Stéphane Ederhy¹², Samia Martin², Philippe Veron², Christophe Georger², Takis Athanasopoulos^{6,13,†}, Carole Masurier², Federico Mingozzi², Pierre Carlier⁷, Bernard Gjata², Jean-Yves Hogrel¹⁴, Oumeya Adjali¹, Fulvio Mavilio², Thomas Voit^{15,+}, Philippe Moullier^{1,16,+} & George Dickson^{6,+}

Nat. Commun. 8, 16105 doi: 10.1038/ncomms16105 (2017)

Microdystrophin Gene Therapy

Microdystrophin Gene Therapy

Le Guiner C, Servais L, Montus M, et. al. NATURE COMMUNICATIONS | 8:16105 | DOI: 10.1038/ncomms16105

matthew.wicklund@ucdenver.edu

